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Abstract: Along the basic rationale of the Enke-Samuelson-Takajama-Judge spatial equilibrium theory 
and the dynamic conceptualizations made from arbitrage processes, the study explores regime-switching 
techniques in hidden Markov framework. This is motivated by complex non-linear structure inherent in 
market integration processes, which is derived from multiple equilibria conditions, and transaction costs 
constrained threshold autoregressive (TAR) effects. These place theoretical limitations on current time 
series empirical models that are applied in market integration studies. In equilibrium representation, the 
non-linearities imposed by both alternating rent levels and switching adjustment parameters are directly 
accommodated. Two synthesized time series market data sets of varying levels of non-linear structures 
are used to highlight the strengths and limitations of the Markov variants vis-à-vis the band-TAR models 
that have currently dominated  market integration analysis. The former model could capture alternating 
adjustment processes implied by the relatively complex non-linear market data set while the later 
produced mixed results. 
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1. Introduction 
 
In market integration (MI) modelling and analysis, three fundamental issues present challenges for 
parameter estimation and in effect complicate interpretation of empirical results. These are data 
availability and quality, theoretical and conceptual contextualisation, and as a result the choice for 
empirical model structure to be applied.  For comprehensive MI studies data on transaction costs (TC), 
rent and trade series are very crucial in equilibrium representation. Basically, MI analysis attempts to 
identify the sequence and dynamics of inter-markets relationships as defined by the long-run equilibrium 
conditions on one level and arbitrage processes on the other. If all economic time series data of the 
markets are available or observable, one can easily conclude such patterns from data on transaction costs, 
trade quotas/volumes and price series as equilibrium theories postulate. That is, profit levels could easily 
be constructed to classify the markets into successful or failed arbitrage conditions as well as 
disintegrated/integrated outcomes given data on tradability.  
 
As noted by Barrett (2005), at the heart of many spatial market integration analysis lies the Enke-
Samuelson-Takajama-Judge (ESTJ) theory of spatial equilibrium. The concept in time space implies 
multiple equilibria system defined by prevailing arbitrage conditions and corresponding tradability 
structure (see Abunyuwah, 2008; Baulch, 1997; Sexton et al., 1991; Spiller and Wood, 1988 for conceptual 
review). This implicit long-run assumption has motivated the application of the parity bound model 
(PBM) as a regime-switching tool in MI analysis within equilibrium specification.  In integrated markets, 
trade and arbitrage forces lead to price transmission and in effect rent adjustments conditional on 
prevailing transaction costs. That is in price transmission modelling transaction costs can constrain price 
adjustments and exhaustion of arbitrage opportunities to a given threshold. Under such 
conceptualisation, standard threshold autoregression (TAR) formulations have been utilised to analyse 
inter-market dynamics in a non-linear framework (see for example Balke and Fomby, 1997; Abdulai, 
2002; Goodwin and Piggott, 2001; and recent applications by Butler and Moser, 2010; Fackler and Tastan, 
2008; Moser et al., 2009; Stephens et al., 2008).  
 
Notwithstanding the fact that insights from the PBM and TAR models raise important market policy, 
measurement and theoretical questions under specific inter-market conditions in their respective 



536 

 

applications, they have not been combined effectively so far. Even though time series characteristics of 
markets inter-relationships carry important policy and methodological implications, they impose 
analytical complexity when other crucial elements of market integration concept such as transaction 
costs, arbitrage and spatial equilibrium conditions that play major role in PBM are to be directly reflected.  
Studies such as Abunyuwah (2008), van Campenhout (2009), Barrett and Li (2002) and Baulch (1997) 
have conceptually demonstrated how each of these and or their combined effects create non-linear 
constraints on the dynamic system. For instance, Abunyuwah (2008, 2013) demonstrates that if markets 
are characterised by switching equilibria conditions over time, then a two-layer non-linear structure 
ensues if transaction costs motivated threshold effect is present. The presence of the later characteristic 
leads to regime switching that is based on the level or magnitude of price differences in relation to 
prevailing TC. The former on the other hand results in non-linearity that alternates based on ruling 
equilibrium condition. Thus whether rent to arbitrage is equal, greater or less than zero at expectation 

(
*( ) 0tE R  , 

*( ) 0tE R   or 
*( ) 0tE R  ); where 

*

tR is rent, defined as price differences less 

transaction costs.    
 
Indeed, identifying  switching equilibria patterns over time under real dynamic, limited data and 
uncertain economic circumstances as is the case for agricultural commodity markets inter-relationships 
requires tools that can inherently infer latent structures from available observed variables. One of such 
tools is the hidden Markov model, which has been applied in varied forms and in different scientific 
domains. While few recent studies in MI analysis have utilised the Markov switching framework along 
Hamilton’s (1989) specification (Zhao et al., 2012; Brummer et al., 2009; Kostov and Lingard, 2004), 
comprehensive investigation of the Markov switching structure with respect to data complexity that may 
be imposed by ESTJ spatial equilibrium theory and band-threshold (b-TAR) dynamics is limited. This 
paper contributes to the MI modelling literature by using synthesized market data of varying non-linear 
complexities to investigate the extent to which the Markov-switching framework can identify MI 
processes. The synthesized data sets are generated from existing MI model conceptualizations following 
Abunyuwah, (2008). We first apply the models when relatively simply non-linear inter-market processes 
that are motivated by transaction costs constrained threshold effects holds. In the other, we use relatively 
complex non-linear data structure that adds another level of non-linearity, which is derived from 
switching equilibria conditions to the former.   
  
Methodological Developments in MI Analysis: Methodological concerns in MI analysis have retained 
consistent interest in the literature for over five decades now. The complexity of the MI concept has 
resulted in the application of varied models from different but consistent theoretical and or market and 
data structure contexts. In the dynamic framework for instance, time series tools of varying levels of 
structural complications have been applied under specific model assumptions to infer the extent and 
degree to which markets are integrated. These specifications have grown rapidly from simple bivariate 
correlation analysis of price series through asymmetric models, cointegration and error correction 
models (ECM) to threshold and other forms of non-linear methods. In the static framework however, MI 
analysis has been carried out within the structure of the ESTJ spatial equilibrium model. 
 
Early modelling studies in MI analysis emerged in the early 1950s. In a static equilibrium setting, Enke 
(1951) defined trade functions and transportation costs for regions that trade in homogenous goods. In 
the system, each of the regions constitutes a single and distinct market separated but not isolated by 
transportation cost per unit. Under regional supply, demand and location price equilibrium conditions a 
state of equilibrium exists between these markets. Samuelson (1952) showed how this equilibrium 
process could be formulated into mathematical linear programming problem and demonstrated how its 
objective function could be solved by iterative methods. Takayama and Judge (1971) reformulated the 
problem into a quadratic programming setting. Notable applications and extensions in this modelling 
framework, which are popularly labelled Parity Bound Models (PBMs), include Baulch (1997), McNew & 
Fackler (1997), Barrett & Li (2002) and Negassa & Myers (2007). As already noted by many previous 
studies, this framework provides comprehensive structure for MI analysis where issues of tradability, 
contestability, discontinuity in trade and market imperfections can be accommodated.  Among major 
limitations raised against the PBM are data requirements (especially transactions cost and trade flow 
data), tractable model implementation procedures and model specification assumptions (Abunyuwah, 
2012; van Campenhout, 2007 provide detailed review).  
.  
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 In the dynamic framework, Farrell’s (1952) empirical investigation on irreversible demand functions; 
Lele (1967), Granger & Elliot (1967) and Tweeten & Quance (1969) price-based assessment of markets 
can be considered as some of the earliest efforts to employing price transmission econometrics in market 
integration analysis. These early studies principally utilised price correlation on the premise that 
arbitrage processes of integrated markets will also have co-movement in their prices series. Ravallion 
(1986) then introduced a comprehensive and dynamic framework, which addressed many of the 
limitations that were raised against the simple bivariate correlation models. For instance, his model made 
provision for short and long run adjustment dynamics. In the late 1980s and early 1990s, insights from 
Granger causality tests, cointegration and error correction models, and their vector specifications brought 
considerable improvements in the time series framework (see for example, Brorsen et al., 1985; Kinnucan 
& Forker, 1987; von Cramon-Taubadel, 1998; Wohlgenant, 1999). These in particular, addressed issues of 
non-stationarity and spurious parameter estimates.  
 
Unlike studies in the static equilibrium specifications however, these models did not make provision for 
switching equilibria conditions or regime switching processes. To address non-linearity imposed by 
transactions cost on MI processes, the threshold models and extensions have been proposed and utilised 
extensively in the dynamic applications (For examples; Fackler and Goodwin 2001; Meyer 2004; Abdulai 
2007; Fackler and Tastan 2008, Stephens et al., 2008; Moser et al., 2009; Butler and Moser, 2010). In fact, 
TAR models resolve one of the major modelling challenges in MI analysis. That is, they address non-linear 
constraint imposed on MI processes by transaction costs component without using observable 
transaction costs data. However, as noted above and recently demonstrated by Abunyuwah (2013) in 
synthesized experiment, the general b-TAR models do underestimate adjustment parameters when the 
DGP is characterised by switching equilibria dynamics. In their attempt to address switching inter-market 
adjustment processes in the time-series domain, Stephens et al. (2008) and Amikuzuno, (2011) utilised 
trade flow data in price transmission analysis, similar to tradability implications drawn from trade flow 
data in  PBM applications. The current methodological frontier and empirical studies from both dynamic 
and static model applications point to non-linear complexities and challenges that confront analysts in MI 
studies. The continuous search for robust and yet flexible model structure in MI analysis is necessitated 
by market structure, efficiency, market imperfections and limited data implications that are derived from 
MI conclusions for market policy recommendations.  
 
2. Methodology 
 
Hidden Markov variants with dynamic adjustment techniques have seen dramatic applications in many 
economic fields since Hamilton’s groundbreaking work in 1989 (see also Krolzig, 1997; Kim and Nelson, 
1999 and Cappé et al., 2005). In fact, the HMM concept has been one of the most successful statistical 
tools utilised for complex patterns and systems analysis across almost all fields of scientific domain 
where interests had focused on sequence and systems identification, classification and dynamics over 
time. Classically, a hidden Markov model is doubly stochastic process with an underlying stochastic 
process that is not directly observable but can be observed only through another stochastic process that 
produces the sequence of observations (Cappé et al., 2005). Generally, depending on what one intends to 
model and the purpose for which the HMM is to be used, the process can be defined in terms of the joint 
probability distribution of the variables or through a functional representation, the so-called general 
state-space model.  
 
In line with model structure used in the PBM framework for instance, we can assume that price 
differentials, 1 2, ...... tR R R  can be defined as independent series, given TC, but generated by a non-linear 

process defined by an M-state arbitrage conditions. In this case, the system can be thought of as having 
been generated from a multiple equilibria system with switching rent levels that are represented by 

* 0tR  , * 0tR   or * 0tR  , after taking transaction costs into account. From this scenario, regime one 

may imply equilibrium of normal economic profit * 0tR   (rent to arbitrage is zero), while in regime two 

the cost of trade might be unduly high to imply autarky condition (i.e. price differentials fall far below the 
implied transactions cost). Regime three which refers to periods of arbitrage failure may be due to say 
trade barriers or market power (i.e. price differentials fall far above the implied transactions cost). This 
position can be seen as direct representation of the PBM in a hidden Markov sense. To reflect the market 
dynamics in MI analysis as those in b-TAR models, a functional representation, the Markov switching 
model is applied.  
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Noting that hidden Markov model is doubly stochastic process with the state variable not directly 
observable but produces the sequence of the observations variable, the two doubly stochastic processes 
can be expressed and defined as stated in equations (01) to (04) based on joint and conditional 
probability theory.  
 

: : 1: 1 1: 1 1: 1 1: 1( , ) ( , | , ) ( , )            t T t T T T T T T TP R C P R C R C P R C      ................... (1) 

1: 1 1: 1 1: 1 1: 1 1: 1 1: 1( | , , ) ( | , ) ( , )          T T T T T T T T TP R C R C P C R C P R C      ........  (2) 

1: 1 1: 1 1: 1( | ) ( | ) ( , ) T T T T T TP R C P C C P R C    ........................................................ (3) 
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Where, ,1( ) iP c  is the initial state; 
1( | ) ,ijt tP C C a A  is state transition probabilities; 

 ( | ) j tt tP R C b R , is observed probabilities of the tR  series given the hidden state processes (see Kim 

and Nelson, 1999; Cappe et al., 2005; Blimes, 2006 for detailed exposition). 
 
When a given system can be modelled in HMM then both the observation sequence and the underlying 
state sequence probabilities can be calculated from the conditional dependencies among the variables 
given the model parameters. The above frame of estimation, fundamentally defines the statistical 
estimation tool for HMMs. However, specific computational complexities arise as to what distributional, 
stability of the transitional states and or dynamic structural assumptions one imposes on the system. For 
instance, in state-space models of many applied economics analysis the forward/backward probabilities 
are evaluated via Hamilton (1989) and or Kim (1994) filters. Applications of Markovian approaches in 
econometrics have been generally based on the Markov regime switching of Hamilton (1989), which in 
general moves along the switching linear Gaussian autoregression models. Other prominent applications 
in econometrics include Hamilton and Susmel (1994), Filardo (1994), Diebold et al. (1994), Krolzig 
(1997), Kim and Nelson (1999), Krolzig et al. (2002) and Otranto (2005). In these extensions assumptions 
underlying the transition probability, lag-structure and variance component among others have been 
relaxed and/or expanded based on theoretical basis of the context in which the data generating processes 
(DGP) are assumed.  
 
Markov-Switching Market Equilibrium Model: As noted above, Markov switching models are special 
form of classical HMMs where the observed series do not only depend on the state variable but also on 
some lag variables. Based on ESTJ equilibrium theory and TAR models, with relatively high frequency 

data, the tR  series is specified to account for any dynamic adjustments that govern each of the 

equilibrium points. If data on trade is available, as sometimes used in the PBM structure, then two lines of 
specifications are possible in the vector framework; by assuming co-breaking of state processes for 
system variables in one case and relaxing the assumption of co-breaking in the other (see Otranto, 2005). 
Since the two differ by inter-state dependence structure and computational complexities, we implement 
the models that carry the co-breaking assumption in this demonstration. In equation (06) the system is 
specified in dynamic framework to account for rent adjustments as those evaluated in classical threshold 
autoregressive settings of (05) but with the possibility of accounting for switching system parameters 
that may be imposed by market segmentation, threshold effects and or market imperfections.       

1t t tR R u       ……….. (5)                                                                                                                 
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 
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
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


 
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  

 ……….(6)                                            

                                                                                           

The state variable mc  of equation (06) indicates one of the M possible market equilibria (regimes) that 

govern the system at time t. In general, the 
1tR 

vector represents the observations  
1t j j

R


 

 in the vector 

autoregression system and the parameter vector   is assumed to be dependent on the ruling state at 
time t. As shown in Krolzig (1997), a classical threshold representation and equilibrium TAR in particular 
reduces to two-state switching autoregressive model as stated in equation (08) below. The switching 
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coefficients represent two alternating adjustment parameters that characterise the process dynamics 
when 

1tR 
 exceeds TC on one hand, and for when 

1tR 
 is lower than TC. The band-threshold 

autoregressive (b-TAR) models of price differentials, which are often used in the analyses of the law of 
one price and other arbitrage-based models in market integration analysis (see Obstfeld and Taylor, 
1997) can be deduced from standard autoregressive model (05) as follows:                                                                                                      
                                   

1 1 1 1 1 1

0 1 2 1 1 2

1 1 2 3 2 1

( )          if   

                  if   

( )          if  

t t

t t t

t t

R e R

R R e R

R e R
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

    
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  …………………………(7) 
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For general b-TAR framework however, three-state mean/intercept model with two statistically distinct 

switching adjustment parameters ( 0 and
1 as in equation (07)) that associate dynamics within and 

outside the threshold band respectively apply. This can be seen from the b-TAR representation in (07) 
above, where in a symmetric structure the mean values for regime 1 and 3 differ by their signs. In 

equation (08), 
mc represents the degree to which deviations from the TC ( i ) are corrected, a form of 

“error-correction”; 
mc  captures state-specific intercept/mean and te is the error term. 

 
From the perspective of PBM as a mixture distribution model where three differing rent levels may 
alternate in the long run, the non-linear structure imposed by b-TAR as discussed above is altered. Thus, 
after accounting for persistent adjustment processes imposed by TC within the threshold band, the 
system may still exhibit some adjustment persistence as propagated by periods of inter-markets 
segmentation states. In the general PBM structure of equation (09) below, TC data is used to construct the 
rent series by defining the upper and lower bounds.  
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In equation (09) the k  are probabilities, describing the three regimes and the error parameters are 

defined by 
2 2

u v,  and    . From equation (10),   is the standard normal density function and   is the 

standard cumulative distribution function (see Barrett & Li, 2002 for comprehensive model with trade 

flow data).  We state the Markovian version of the PBM in equation (11), where 
*

tR  of the equation 

defines xT N  observed series ( N =1 in present case with rent series only, no trade variable considered; 

and T  is the length of the series). In this case, rent equals price differentials less TC. The 
mc  comprises 

of the state-dependent equilibrium rent levels, (e.g. * 0R  , under perfect integration case for rent) and 

error term, tu which follows normal i.i.d (the variance can also be allowed to vary across regimes). Under 

conditions where mc  does imply that 0R  , then 
mc  switches between significantly positive or 

negative mean to represent periods of inter-market segmentation or imperfections. While under the PBM 
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mc  is inherent component of the error term, tu (i.e. the normal plus half-normal components), under 

MS-EM as stated above, it implies state-specific mean/intercept, which propagates on a hidden stochastic 
process over time (see Abunyuwah, 2008 for comprehensive demonstration under different assumption).  
 
Demonstration with Synthesized Data: Two different series with differing non-linear complexities are 
used in this experiment. Based on the ESTJ theoretical framework and PBM in particular, price 
differentials are generated directly. The process of integration is taken into account by using b-TAR 
framework as specified in equation (07), which translates into equation (08) above. The first set comes 
from a purely transaction costs (TC) based TAR propagated data generating process (DGP) as in equation 
(07) while the other adds another layer of non-linear complexity imposed by inter-market segmentation 
or imperfections as implied by PBM set up of equation (09).  
 
The first set was utilized to highlight the strengths of the TAR and MS-EM models when the non-linear 
complexity is imposed by transaction costs on the adjustment process in the inter-market relationship 

only. The resultant series is denoted as series A, where 
1  = -0.78 at expectation, (

1 =0.22) and 0  set at 

zero (0) at expectation (thus, 
0 =1), which defines random walk process within the threshold band. We 

also set TC and threshold parameter,
1 =

2 =5.0, indicating symmetric structure; with 1.20 innovation 

( u ) variance component. This is presented in figure 1 below as simple non-linear series. Here, when 

tradability holds any significant margin that emerges is quickly exhausted and as such price differentials 
revert to TC ( ) bounds. To exemplify the real strengths and limits of these models we have concentrated 

on the dynamics that associate with inter-markets equilibrium processes as dictated by various levels of 
market efficiency or inefficiency. In effect, the complexity that a trend component in the time series can 
impose on TAR modeling, especially on transactions cost (see van Campenhout, 2007) and the latter’s 
non-constant implications, are not included in this demonstration. This was done to avoid dampening the 
strengths of classical TAR models in identifying transaction costs motivated threshold effects. 
 
Figure 1: Simple Non-linear Price Differentials Series (Series A) 
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Source: Authors’ own construct 
 
In the second data set relatively complex non-linear processes that accommodate switches between inter-
markets conditions within multiple equilibria structure as implied by the PBM, specification in equation 
(09) above is used. This series is shown in Figure 2 below and denoted as series B. As in the simple non-

linear set above, 
1  was set to negative 0.78 (beta=0.22) for tradability periods beyond the threshold point 

of 5.0 with normally distributed errors with variance 1.2. In addition 2 periods of stylised 
imperfect/segmented market conditions were fixed around time points (71:115 and 621:675). In these 

periods 
i =0 was implied to reflect inter-market segmentation periods. Again, we did not include trend 

and non-constant TC in the series for reasons noted above. 
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Figure 2: Relatively Complex Non-linear Price Differentials Series (Series B) 
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 Source: Authors’ own construct 
 
3. Results 
 
Results from Band-Tar and Markovian Models: In Table 1 below, b-TAR model is used to analyse 
series A presented above to conclude on the implied inter-market processes by assuming that the DGP is 

of TC constrained threshold type. In effect it is expected that rho ( 0 ) from equation (07 and 08) should 

not differ significantly from zero to reflect random walk nature of price differentials that fall within the 

threshold band. However, rho ( 1 ) should significantly differ from zero to correspond to periods in 

which price differentials exceeded TC levels in absolute terms. We utilise general SETAR set up with the 
Markov-switching package (MSVAR) of Krolzig (1998) on OX 3.2 platform and Gauss codes provided by 
Kim & Nelson (1999).  
 
Table 1: TAR and Markov Analysis for Simple Non-linear Relations (Series A)  

 Linear 
Model 

                                 B-TAR Model Markov Variant (MSIA) 

Variable   

 Regime 
1 

Regime 2            Regime 
3 

Regime 1 Regime 
2 

 
Regime 
3 

Threshold 
Point  

Rt≤ -4.84 -4.84≤Rt≤ 
4.38 

Rt≥4.38    

Constant 
 

-0.103    
(0.082) 

-3.574    
(0.538) 

-0.103     
(0.105) 

4.696    
(0.545) 

-2.731    
(0.346) 

 
0.124 
(0.073) 

 
  1.420    
(0.384) 

R(t-1) 
 

 
-0.149   
(0.017) 

 
-0.619    
(0.074) 

 
-0.066          
(0.036) 

 
-0.754    
(0.075) 

 
  0.799      
(0.072) 

 
-0.085 
(0.017) 

 
 -0.818      
(0.084) 

Regime 
Probabilities 

 
1.0000 
 

 
0.215 

 
 0.579 
 

 
0.207 
 

0.079 
 

0.819 
 

0.109 
 

LR (Davies)                  124.831 (0.000)***  

Source: Own Analysis with MSVAR 3.1: ***,**,*; represent significance levels under 1, 5 and 10% 
  
As expected, the test for the presence of threshold effects against the null of linear representation 
strongly favours the former as indicated by the likelihood ratio (LR) statistic and highly significant p-
value for Davies statistic. The estimated values for rho (

1  
and 

0
) strongly point to rapid adjustment 

process that characterises the series when the threshold points are exceeded (
1 = -0.619 (0.074) and -

0.754(0.075) for regimes 1 and 3 respectively); and near random walk process within the threshold band 

as rho for this regime ( 0 = -0.066 (0.036)) does not differ significantly from zero. From column two 

however, the TAR effect has blurred the rapid adjustment phases in the linear representation with 
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indication of strong persistence in the inter-markets relation (  = -0.149 (0.017)). Thus the strength of 

TAR models in this respect is obvious. In the second half of the table, results from the Markov switching 
version are presented. Following Krolzig (1997), a three state representation of the b-TAR model in the 
form of switching mean and adjustment parameters was used (see equations 05-08). In this simple non-
linear data set the Markovian variant (MSIA) also produces similar results and carries same market 
integration conclusions as the b-TAR model does. For instance two distinct adjustment processes implied 
by TC motivated rent series from spatially integrated markets are produced. These are (0.799 (0.072)  
and -0.818 (0.084))  for regimes one and three; and (-0.085(0.017)) for regime two. For the later regime, 
price differentials that fell within the threshold band did not adjust back, while strong correction ensued 
for regimes three and one where price differentials exceeded the TC levels. Again, the intercept terms for 
regimes one and three differ significantly from zero while that of regime two is not, similar to results from 
the b-TAR, even though in this particular set the symmetric structure could not be captured as imposed 
by the DGP.  
 
In line with the main proposition that motivates the application of PBM and limits imposed by data and 
conceptual complexities on b-TAR models (see Abunyuwah, 2013), we also applied the MSIA and b-TAR 
models to analyse series B. This data set is characterised by a mixture of TC based threshold effects and 
switching equilibrium conditions implied by alternating segmented and integrated market conditions. 
The results are presented in Table 2 below. 
 
Table 2: TAR and Markov Estimates of Complex Non-linear Series (Series B) 

 Linear 
Model 

                                 B-TAR Model Markov Variant (MSIA) 
 

Variable   

 Regime 
1 

Regime 2            Regime 3 Regime 1 Regime 2 Regime 
3 

Threshold 
Point  

Rt ≤ -
7.35 

-7.35 ≤ Rt 
≤  5.25 

Rt ≥ 5.25    

Constant 
 

  0.015    
(0.092) 

 
-5.603    
(0.689) 

 
-0.156    
(0.064) 

 
3.165    
(0.385) 

 
-4.389    
(0.495) 

 
0.077    
(0.160) 

 
0.755    
(0.253) 

R(t-1) 
 
 

 
-0.072 
(0.012) 
 

 
-0.340    
(0.052) 

 
-0.260    
(0.013) 

 
-0.220    
(0.034) 

 
-0.745   
(0.070) 

 
0.052    
(0.086) 

 
-0.506    
(0.087) 

Regime 
Probabiliti
es 

 
1.0000 
 

 
0.100 

 
     0.710 
 

 
0.190 
 

0.197 
 

0.474 
 

0.321 
 

LR 
(Davies)  

                124.831 (0.000)***                  52.972 [0.000] *** 

Source: Own Analysis with MSVAR 3.1: ***,**,*; represent significance levels under 1, 5 and 10% 
 
From Table 2, the null of linear representation is also rejected as indicated by the LR and the Davies 
statistics. When b-TAR model was applied, the three adjustment parameters produced (see columns 3 to 
5 of row five of the table) indicate a form of persistence across all the regimes. Unlike the simple non-
linear data set considered in Table 1, the impact of the complex data set has significantly blurred and 
understated the strong rent correction implied by periods of relatively perfect market integration phases 
(see Abunyuwah, 2013 for recent demonstration). In the second half of the table, results from the Markov 
variant are also presented. Although, three statistically different adjustment parameters were produced 
from Markov version of equation (10): -0.745(0.070); 0.052(0.086) and -0.506(0.087), those of regimes 1 
and 3, point to a form of relatively rapid correction while that of regime 2, like the results from Table one 
for the simple non-linear data set, indicates strong persistence. 
  
Discussion: The results presented above for series A indicate that both models could identify the 
adjustment processes into the two regime structures imposed on the DGP. It is worth noting that the 
intercept values obtained from the Markov variant may erroneously imply asymmetry in rent levels if one 
attempts to interpret these in terms of a threshold structure. In line with conclusions drawn by 
Abunyuwah (2013), b-TAR results from series B do not point to strong conclusion for TC-based threshold 
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effects where the adjustment parameter (  ) values for regimes 1 and 3 were expected to be high in 

absolute terms. Although applying five-state structure in the b-TAR framework brought  further insights 
into the nature of dynamics that associate the system, the fundamental model structure of the TAR which 
estimates adjustment parameters based on levels of Rt-1 automatically produces biased estimates if the 
series are characterised by alternating integrated and segmented markets interrelationship. This occurs 
in that TAR models concentrate out samples based on Rt-1 levels (horizontal strata). Thus, once a 
threshold point is defined dynamics of series that fall below or above such threshold level form a sub-
sample and are assessed together.  
 
Results from the Markov variants presented in Table 2 and from specification (08) produced adjustment 
estimates that were closer to those of the true DGP utilised. However, to conclude on whether the periods 
of strong persistence are due to threshold or segmentation effects from the direct three-state b-TAR 
version of equation (07) requires further information. That is, multiple equilibria structure evaluated in 
dynamic framework imposes theoretical limitation on the basic three-state b-TAR and its Markov variant. 
This is due to the fact that rent levels that associate periods of inter-market segmentation or 
imperfections are significantly greater or less than zero (price differentials greater than TC in absolute 
terms) while those that fall within threshold band are not (see Barrett and Li, 2002). In this case an 
increased number of states are required to further create distinction between persistence due to 
threshold effects and that of inter-market imperfections or segmentation. If transaction costs levels can 
be estimated as in PBM applications then the lower level complications imposed by TC based threshold 
effects can be removed or concentrated out in sample splitting approach as suggested by Abunyuwah 
(2008) and Van Campenhout (2009). To this effect we applied a five-state regime switching models in 
both the b-TAR and the Markov frameworks. For the b-TAR model, four and five regime systems were 
estimated. Information criteria selected the five-state b-TAR structure where in addition to the three 
threshold points estimated under the classical three-state b-TAR specification (Table 2), two other ones 
were detected at -3.9 and 3.3.  The following model parameter estimates for regime specific constants 
(Const) and adjustment parameters (Rt-1): (Const -4.718(0.151); Rt-1 -0.877(0.024)) and (Const 
3.151(0.383); Rt-1 -0.220(0.034)) respectively were estimated from the five regime model. Though 
increased number of states has brought further insights, as has been noted above TAR models 
concentrate out samples based on Rt-1 levels (horizontal strata), which inherently produce biased 
adjustment parameter estimates. In the Markov framework, the five-state regime switching model was 
estimated using equations (06). The following results were produced: (Const 0.102(0.068), Rt-1 
0.958(0.036); Const -7.135(0.422), Rt-1 0.754(0.104); Const -3.293(0.363), Rt-1 0.298(0.041);  Const 
3.905(0.319), Rt-1 0.199(0.041); Const 4.497(0.358), Rt-1 0.828(0.137)). In the Markov variant, while the 
two distinct adjustment processes remained, it has also become obvious that some periods of higher rent 
levels are also characterised by very low rate of correction (regime 2 and 5) though not as sticky as those 
in regime one where TC based threshold effects are expected. Unlike the b-TAR structure, the MS-EM is 
not affected by the mixed adjustment patterns once some sort of state transition persistence exists with 
the periods of inter-market anomalies as it uses sub-samples extracted in vertical windows.  
 
4. Conclusion 
 
In this paper, we have demonstrated that given the flexibility of hidden Markov models and the fact that 
market equilibrating processes fall within a complex non-linear time series system, Markovian methods 
can directly be adopted in market integration analysis. The exercise has shown that the Markovian 
models can conveniently be formulated in equilibrium structure implied b-TAR and PBM 
conceptualizations. Thus, while this study did not employ formal model selection techniques in assessing 
how the Markov variants perform against b-TAR models, with our prior knowledge in the DGP and 
following conceptual/theoretical bases used in MI model applications  flexibility and strengths of Markov 
models in non-linear MI processes have been demonstrated. The alternating dynamic processes and 
efficiency implications implied by multiple equilibria inter-market structures can be captured by the 
Markovian variants. Future research should investigate testing issues on asymmetry in rent levels. Also 
how both threshold dynamics and switching equilibria non-linearities can be contained in the b-TAR 
structure should be explored (i.e. hierarchical Markov framework).    
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